Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Escorpizo, Reuben (Ed.)The rate of adjustment in a movement, driven by feedback error, is referred to as the adaptation rate, and the rate of recovery of a newly adapted movement to its unperturbed condition is called the de-adaptation rate. The rates of adaptation and de-adaptation are dependent on the training mechanism and intrinsic factors such as the participant's sensorimotor abilities. This study investigated the facilitation of the motor adaptation and de-adaptation processes for spatiotemporal features of an asymmetric gait pattern by sequentially applying split-belt treadmill (SBT) and asymmetric rhythmic auditory cueing (ARAC). Methods: Two sessions tested the individual gait characteristics of SBT and ARAC, and the remaining four sessions consisted of applying the two interventions sequentially during training. The adjustment process to the second intervention is referred to as “re-adaptation” and is driven by feedback error associated with the second intervention. Results: Ten healthy individuals participated in the randomized six-session trial. Spatiotemporal asymmetries during the adaptation and post-adaptation (when intervention is removed) stages were fitted into a two-component exponential model that reflects the explicit and implicit adaptation processes. A double component was shown to fit better than a single-component model. The decay constants of the model were indicative of the corresponding timescales and compared between trials. Results revealed that the explicit (fast) component of adaptation to ARAC was reduced for step length and step time when applied after SBT. Contrarily, the explicit component of adaptation to SBT was increased when it was applied after ARAC for step length. Additionally, the implicit (slow) component of adaptation to SBT was inhibited when applied incongruently after ARAC for step time. These outcomes show that the role of working motor memory as a translational tool between different gait interventions is dependent on (i) the adaptation mechanisms associated with the interventions, (ii) the targeted motor outcome of the interventions; the effects of factors (i) and (ii) are specific to the explicit and implicit components of the adaptation processes; these effects are unique to spatial and temporal gait characteristics.more » « less
-
This study categorizes the response to asymmetric rhythmic cues into distinct levels of adaptation using changes in their step velocity. Motion capture and force data were collected from healthy individuals undergoing split-belt treadmill and rhythmic cueing interventions. This allowed comparative insights into two distinct adaptation mechanisms (sensorimotor and instructional adaptation) corresponding to the interventions and integration of those findings with trade-off mechanisms within spatiotemporal and kinetic gait parameters. Interlimb gait harmony (corresponding to differences between left and right step velocities) was significantly different between the gait interventions, indicating underlying differences in the dominant adaptation mechanisms driving them. The trade-off mechanisms among step length, swing time, and push-off forces were significantly different (i) between the gait interventions and (ii) between adaptable and non-adaptable subject groups to external rhythmic cues. This suggests that an orthogonal linear relationship between propulsion and either spatial or temporal features may indicate the adaptation mechanism that has a greater contribution towards their motor outcome.more » « less
-
This study explores the influence of Auditory Rhythmic Asymmetric Cueing (A-RAC), Tactile Rhythmic Asymmetric Cueing (T-RAC), and their combination (AT) on key kinetic gait parameters in gait rehabilitation: Vertical Ground Reaction Force Asymmetry (GRF), Push-off Force Asymmetry (POF), and Braking Force Asymmetry (BRK). Utilizing the Computer-Assisted Rehabilitation Environment (CAREN) with 18 participants, this research examines these interventions' effectiveness in generating asymmetric gait. While the results during adaptation indicate that BRK was significantly affected by both A-RAC (p = 0.001) and AT (p = 0.003), only A-RAC had a significant effect on GRF (p = 0.002) during adaptation. None of the interventions significantly altered POF, suggesting its resistance to sensory cue modification. These findings provide valuable insights for enhancing gait rehabilitation strategies, particularly in addressing vertical loadmore » « less
-
Abstract Introduction Split-belt treadmill training has been used to assist with gait rehabilitation following stroke. This method modifies a patient’s step length asymmetry by adjusting left and right tread speeds individually during training. However, current split-belt training approaches pay little attention to the individuality of patients by applying set tread speed ratios (e.g., 2:1 or 3:1). This generalization results in unpredictable step length adjustments between the legs. To customize the training, this study explores the capabilities of a live feedback system that modulates split-belt tread speeds based on real-time step length asymmetry. Materials and methods Fourteen healthy individuals participated in two 1.5-h gait training sessions scheduled 1 week apart. They were asked to walk on the Computer Assisted Rehabilitation Environment (CAREN) split-belt treadmill system with a boot on one foot to impose asymmetrical gait patterns. Each training session consisted of a 3-min baseline, 10-min baseline with boot, 10-min feedback with boot (6% asymmetry exaggeration in the first session and personalized in the second), 5-min post feedback with boot, and 3-min post feedback without boot. A proportional-integral (PI) controller was used to maintain a specified step-length asymmetry by changing the tread speed ratios during the 10-min feedback period. After the first session, a linear model between baseline asymmetry exaggeration and post-intervention asymmetry improvement was utilized to develop a relationship between target exaggeration and target post-intervention asymmetry. In the second session, this model predicted a necessary target asymmetry exaggeration to replace the original 6%. This prediction was intended to result in a highly symmetric post-intervention step length. Results and discussion Eleven out of 14 participants (78.6%) developed a successful relationship between asymmetry exaggeration and decreased asymmetry in the post-intervention period of the first session. Seven out of the 11 participants (63.6%) in this successful correlation group had second session post-intervention asymmetries of < 3.5%. Conclusions The use of a PI controller to modulate split-belt tread speeds demonstrated itself to be a viable method for individualizing split-belt treadmill training.more » « less
-
null (Ed.)Abstract Gait rehabilitation therapies provide adjusted sensory inputs to modify and retrain walking patterns in an impaired gait. Asymmetric walking is a common gait abnormality, especially among stroke survivors. Physical therapy interventions using adaptation techniques (such as treadmill training, auditory stimulation, visual biofeedback, etc.) train gait toward symmetry. However, a single rehabilitation therapy comes up short of affecting all aspects of gait performance. Multiple-rehabilitation therapy applies simultaneous stimuli to affect a wider range of gait parameters and create flexible training regiments. Understanding gait responses to individual and jointly applied stimuli is important for developing improved and efficient therapies. In this study, 16 healthy subjects participated in a four-session experiment to study gait kinetics and spatiotemporal outcomes under training. Each session consisted of two stimuli, treadmill training and auditory stimulation, with symmetric or asymmetric ratios between legs. The study hypothesizes a linear model for gait response patterns. We found that the superposition principle largely applies to the gait response under two simultaneous stimuli. The linear models developed in this study fit the actual data from experiments with the r-squared values of 0.95 or more.more » « less
-
The combined gait asymmetry metric (CGAM) provides a method to synthesize human gait motion. The metric is weighted to balance each parameter’s effect by normalizing the data so all parameters are more equally weighted. It is designed to combine spatial, temporal, kinematic, and kinetic gait parameter asymmetries. It can also combine subsets of the different gait parameters to provide a more thorough analysis. The single number quantifying gait could assist robotic rehabilitation methods to optimize the resulting gait patterns. CGAM will help define quantitative thresholds for achievable balanced overall gait asymmetry. The study presented here compares the combined gait parameters with clinical measures such as timed up and go (TUG), six-minute walk test (6MWT), and gait velocity. The comparisons are made on gait data collected on individuals with stroke before and after twelve sessions of rehabilitation. Step length, step time, and swing time showed a strong correlation to CGAM, but the double limb support asymmetry has nearly no correlation with CGAM and ground reaction force asymmetry has a weak correlation. The CGAM scores were moderately correlated with TUG and strongly correlated to 6MWT and gait velocity.more » « less
An official website of the United States government
